

4º CONGRESO PARAGUAYO DE VIALIDAD Y TRANSITO

SMA – REVESTIMENTO ASFÁLTICO DE ALTO DESEMPENHO

OSVALDO TUCHUMANTEL JUNIOR - BRASIL

- Introdução
- Histórico
- O que é SMA
- Finalidade e benefícios
- Onde utilizar
- Dosagem da mistura asfáltica
- Especificação
- Operação Usinagem
 - Aplicação

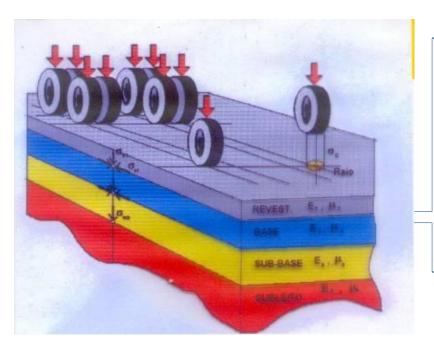
Introdução

Tendência aumento volume de tráfego e de carga Desejo individual de mobilidade

Novas obras resistentes e duráveis

Manutenção

Preservar Patrimônio Público


Estradas confortáveis e seguras

• Introdução

Características estruturais e funcionais do pavimento

características funcionais

- Segurança (aderência e drenagem, homogeneidade)
- ■Conforto (regularidade longitudinal e transversal, redução de ruídos e estética)
- ■Proteção da Estrutura (impermeabilidade, resistência mecânica ao cizalhamento, desgaste, ação da água e variações de temperatura)

caracteristicas estruturais

- ■Deformação permanente
- ■Trincas de fadiga e térmicas
- ■Resistência à ação da água

Introdução

Novas tendências de revestimentos asfálticos de alto desempenho

Resistência e durabilidade

Conforto e segurança

Misturas asfálticas de graduação descontínua

SMA - Stone Matrix Asphalt

BBTM - Béton Bitumieux Très Mince

GAP Grade

AP - Asfalto Poroso

Definição

O que é SMA? Stone Matrix Asphalt ou Stone Mastic Asphalt Mistura asfáltica de granulometria descontínua, executada a quente, em usina apropriada.

Constituído por elevada porcentagem de agregado graúdo (cerca de 80%) e grande volume de vazios preenchidos por um mástique asfáltico que é composto pela mistura de agregado miúdo (≤ 2mm), material de enchimento,

fibras de celulose, asfalto modificado

"Revestimento Asfáltico de Alto Desempenho"

Introdução

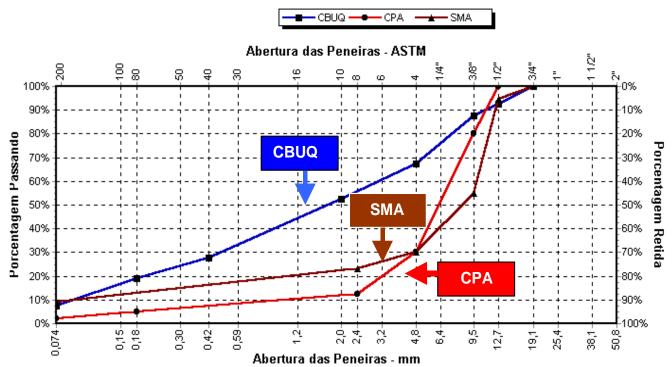
Misturas asfálticas de graduação descontínua

SMA - Stone Matrix Asphalt

BBTM - Béton Bitumieux Très Mince

GAP Grade

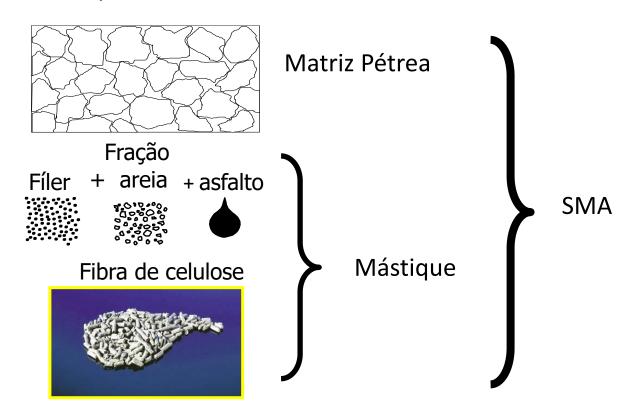
AP - Asfalto Poroso


TIPOS DE MISTURAS	CBUQ	CPA	SMA	BBTM
Agregado graúdo (%)	40 - 60	70 - 80	75 - 80	65 - 75
Agregado miúdo (%)	40 - 60	20 - 30	20 - 25	25 - 35
Fíler (%)	5 - 10	3 - 5	9 - 13	7 - 10
Ligante (%)	5 - 6	4 - 5	6 - 7	5 - 6
Fibras (%)	-	-	0,3 - 0,5	-
Tipos de Ligante	CAP 50/70	AMP *	AMP	AMP
Vazios (%)	3 - 5	18 - 25	3 - 5	> 4
Macrotextura (Hs)	0,3 - 0,5	> 1,0	0,8 - 1,5	0,8 - 1,2

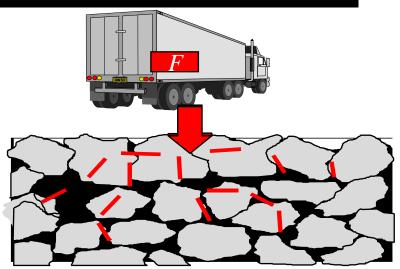
• O que é SMA

Análise de Granulometria

Histórico SMA - Alemanha 1968 - Aplicação manual – uso de asbestos


30/06/1969 – Aplicação com equipamento - Wilhelmshaven

• O que é SMA



O que é SMA

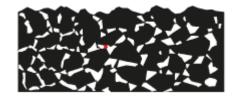
Conceito e Princípio de Funcionamento do SMA

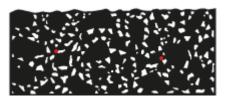
Resistência da mistura

A estabilidade é obtida através do atrito interno dos agregados graúdos que formam o esqueleto da estrutura

• O que é SMA- mistura asfaltica sem fibras

O esqueleto mineral graúdo responsável pela resistência à deformação

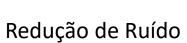

O alto teor de asfalto reduz o envelhecimento da mistura asfáltica



SMA

x Concreto Asfáltico

- Maior resistência a deformação
- Menor grau de trincamento a baixas temperaturas ou estresse mecânico
- Macro rugosidade maior aderência dos pneus
- Melhor drenagem superficial risco reduzido de aquaplanagem
- Durável
- Melhor qualidade no rolamento
- Redução de ruido


Mancha de Areia - Hs Macrotextura

Pêndulo Britânico - SRT

AQUAPLANAGEM

Textura de superfícies

- Onde utilizar
- Revestimento asfáltico para qualquer classe de rodovias independente de clima
 - corredores de onibus
 - aeroportos
 - autódromos

Canais

Onde utilizar

Novos conceitos como camadas asfáltica intermediaria em rodovias de elevada nível de

tráfego

Para manutenção de superfície como camada delgada,
 SMA 0/5 e 0/8

- SUPERPAVE etapas importantes
- Seleção dos agregados
- Seleção do asfalto
- Preparação das amostras e compactação
- Densidade e Vazios
- Conteúdo ótimo de asfalto
- Susceptibilidade da mistura
- Testes de performance

Trafego

Clima

- Dosagem
- Seleção dos agregados graúdos (resistência mecânica, forma e resistência ao polimento) e filer, estabilizante e asfalto conforme especificação
- Método Marshall
- Ensaio de shellemberg O teste de drenagem do asfalto de acordo com
 Schellenberg/von der Weppen para avaliação da estabilidade e homogeneidade da mistura durante a mistura, armazenamento, transporte e aplicação.
- Testes de rastreamento de rodas (EN 12697-22) ensaio Hamburgo
 As normas nacionais também devem ser cumpridas.

Dosagem

4 hs em estufa 150°C

- 15 seg Mistura seca
- 105 seg Mistura

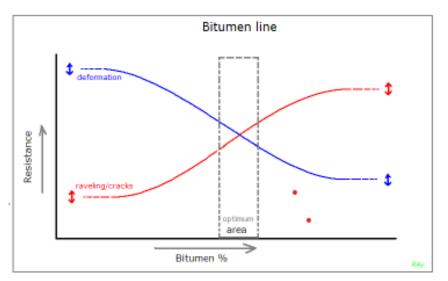
Dosagem

Ensaio de Schellenberg

1 h a 170°C

< 0,2%

> 0,3%


> 0,2% e < 0,3%

Dosagem

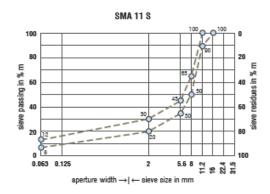
As normas nacionais também devem ser cumpridas.

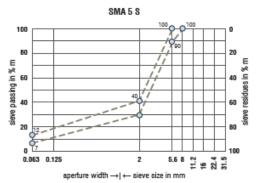
- Dosagem
- Testes de rastreamento de rodas (EN 12697-22) ensaio Hamburgo

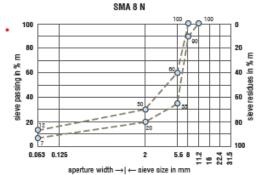
• Especificação

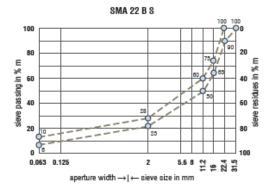
Parameter	Dim.	Wearing course	Test according to			
Resistance to Polishing PSV	[1]	≥ 51 ¹⁾	EN 1097-8			
Los Angeles abrasion	% m	≤ 20	EN 1097-2, Size: 10-15 mm			
Water absorption	% m	≤ 0.5	EN 1097-8			
Resistance to freezing and thawing	% m	≤1	DIN EN 1367-1			
Resistance to freezing	% m	≤ 5	DIN EN 1367-1, Appendix B			
Crushed and broken surfaces	% m	(≥ 90) ≥ 100 ¹⁾	DIN EN 933-5			
Content of organics	% m	≤ 0,5	DIN EN 1744-11, 14.2			
Flakiness index	% m	≤ 20	DIN EN 933-3			
Affinity to bitumen 1)	%	≥ 95 % after 6 h 1) ≥ 90 % after 24 h 1) ≥ 50 % after 72 h 1)	DIN EN 12697-11			

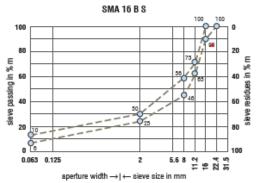
- a) Abrasão Los Angeles ≤ 30 % (DNER ME 035/98);
- b) % partículas fraturadas ≥ 90 % fragmentos retidos
 na peneira de 4,8 mm, apresentar, pelo menos, duas faces
 fragmentadas pela britagem (DNIT 430 ME);
- c) Índice de forma > 0,5 (DNIT 424 ME ou DNIT 425 ME);
- d) % de partículas chatas e alongadas ≤ 20 % na relação de 3:1
- e) Durabilidade ou sanidade;
- f) Absorção ≤ 2 % (DNIT 413 ME);
- g) Adesividade ao ligante asfáltico (DNER-ME 078/94);


	Dim.			Bitumen		Testing Method			
Parameter		45/80-50 A	10/40-65 A	25/55-55 A	70-100	50-70			
Penetration (25 °C)	0.1 mm	45-80	10-40	25-55	70-100	50-70	EN 1426		
Softening Point R&B	°C	≥ 50	≥ 65	≥ 55	43-51		EN 1427		
Fraas Breaking Point	°C	≤ -15	≤ -5	≤ -10	-10 ≤ -1		DIN 12593		
Solubility	% m					≥ 99	DN EN 12592		
Penetration Index					n.r.	n.r.	DIN EN 12491, A		
Kinematic Viscosity 135 °C	mm²/s				n.r.	n.r.	DIN EN 12595		
Dynamic Viscosity 60 °C	Pa-s				n.r.	n.r.	DIN EN 12596		
Elastic Recovery	%	≥ 50	≥ 50	≥ 50			DIN 52021-1 ASTM D6084-04		
Deformation Energy	J/cm ²	≥ 2 (5 °C)	≥ 2 (10 °C)	≥ 2 (10 °C)	inf.	inf.	DIN EN 13589 DIN EN 13703		
Stability (difference between the softening points before and after hot storage)	°C	≤ 5	≤ 5	≤5 ≤5			EN 1427, TL PmB		
Flash Point	°C	≥ 230	≥ 235	≥ 235	≥ 230	≥ 230	ASTM D 92		
Resistance to Hardening									
Change of Mass	% m	≤ 0.5	≤ 0.5	≤ 0.5	≤ 0.8	≤ 0,5	DIN/EN 12607-1		
Change of Softening Point	°C	-2 to +8	-2 to +8	-2 to +8	-2 to +9	-2 to +9	DIN EN 12607-1 DIN 1427		
Remaining Penetration	%	≥ 60	≥ 60	≥ 60	≥ 60	≥ 50	DIN EN 12607-1/3 DIN 1426		
Remaining Elastic Recovery (25 °)	%	≥ 50	≥ 50	≥ 50			DIN EN 12607-1/3 DIN 52013		
Remaining Elastic Recovery (10 °)	%	inf.	inf.	inf.			DIN EN 12607-1/3 DIN 52013		
BBR (-16 °C)	MPa	inf.	inf.	inf.	inf.	inf.	AASHTO TP1		
DSR G* (60 °C)	Pa	inf.	inf.	inf.	inf.	inf.	AASHTO TP 5		
DSR δ (60 °C)	۰	Inf.	inf.	inf.	inf.	inf.	AASTO TP 5		






Especificação

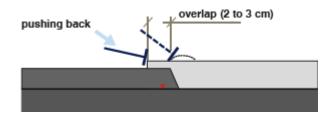


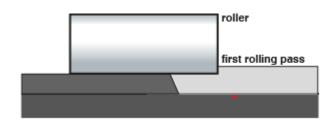
	SMA	SMA binder courses ³⁾ (Trial on several highways)						
Parameter	SMA 11 S	SMA 8 S	SMA 5 S	SMA 8 N	SMA 5 N	SMA 22 BS	SMA 16 BS	
Sieve size [mm]	% m passing	% m passing	% m passing	% m passing	% m passing	% m passing	% m passing	
32.5						100		
22.0						90-100	100	
16.0	100					65-75	90-100	
11.2	90-100	100		100		50-60	63-73	
8.0	50-65	90-100	100	90-100	100		46-56	
5.6	35-45	35-55	90-100	35-60	90-100			
2.0	20-30	20-30	30-40	20-30	30-40	23-28	25-30	
0.063	8-12	8-12	7-12	7-12	7-12	6-10	6-10	
Content of 0/2 with Ecs ≥ 35 % [% m]	100	100	100	≥ 50	≥ 50	100		
Bitumen	25/55-55 or 50/70	25/55-55 or 50/70	45/80-50 or 25/55-55 or 50/70	50/70 or 70/100 or 45/80-50	50/70 or 70/100	10/40-65A (25/55-55)	10/40-65A (25/55-55)	
Binder content [% m]	≥ 6.6	≥ 7.2	≥ 7.4	≥ 7.2	≥ 7.4	≥ 4.8	≥ 5.2	
Fibres [% m]	0.3-1.5	0.3-1.5	0.3-1.5	0.3-1.5	0.3-1.5	≥ 0.2	≥ 0.2	
Void content, designc [% m]	2.5-3.0	2.5-3.0	2.0-3.0	1.5-3.0	1.5-3.0	3.0-4.0	3.0-4.0	
VFB [% vol]	inf	inf	inf	inf	inf		inf	
Rutting Depth, proportional [%]	inf	inf					≤ 5.0 (air)	
Design Loads, 10 t axle passes	≥ 3.2 x 10 ⁶ (≥ 1.8 to ≤ 3.2 x 10 ⁶)	≥ 3.2 x 10 ⁶		(≤ 1.8 × 10 ⁶)	(≤ 0.3 × 10 ⁶)	≥ 1.8 × 10 ⁶	≥ 1.8 x 10 ⁶	

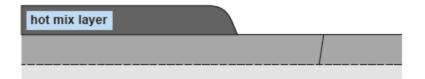
• Especificação

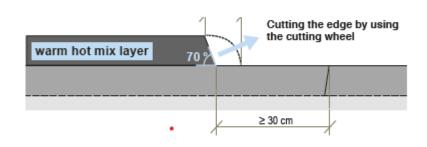
SMA wearing courses								Parameter	SMA 22 BS SMA 1		16 BS					
Parameter		SMA 11 S		SMA8S SMA5S SMA8N SMA5N		Sieve size (mm)	% m passing		% m passing							
Sieve size (mm)		% m passing	a	% m passing		% m passing	% m passing		% m passing	32.5	±8.0 ⁴⁾					
. ,		o iii passiii	9	70 III passilig		A III passilig	n iii passiiig		/e III passilig	22.0	±8.0*					
16.0	±8.0 4)a									16.0		±8.0 ⁴⁾	±5.04)			
11.2		±8.0 4)a	±8.0 4)a	±8.0 4)a			±8.0 4)a	±8.0 4)a ±8.0 4)a		11.2				±8.0 ⁴⁾		
8.0					±8.0 4)a	±8.0 4)a			±8.0 ^{4)a}	8.0						
5.6						±0.0 %				5.6						
2.0		$\pm 8.0^{4)a}$		±8.	0 4)a	±8.0 4)a	±8.0 4)a		±8.0 4)a	2.0	±8.0 ⁴⁾		±8.04)			
0.063		±3.0 4)b		3.0 ⁴⁾		±3.0 4)	±3.0 ⁴⁾		±3.0 4)	0.063	±3.0 ⁴⁾		±3.04)			
Binder content [% m]		±0.4 4)c		±0.4 ^{4)c}		±0.4 ^{4)c}	±0.4 4)c		±0.4 ^{4)c} ± 0.4 ^{4)c}		Binder content [% m]	±0.44)		±0.44)		
Void Content, Marshall [% vol]		1.5-4.0		1.5-4.0		1.0-4.0	0.5-4.0		0.5-4.0	Void Content, Marshall [% vol]	2.0-5.0		2.0-5.0			
VFB [% vol]		n.r.		n.r.		n.r.	n.r.		n.r. n.r.		n.r.	VFB [% vol]	n.r.		n.r.	
Degree of Compaction [%]		≥ 98		≥	98	(≥ 98) ≥ 98		≥ 98		Degree of Compaction [%]	≥ 98		≥ 98			
Void Content in situ [% vol]		≤ 5.0		≤	5.0	(≤ 5.0)	≤ 5.0		≤ 5.0	Void Content in situ [% vol]	1.5-5.5		1.5-5.5			

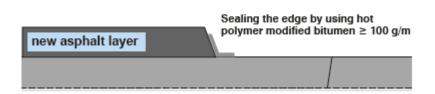
Usinagem e espalhamento

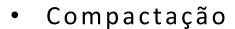


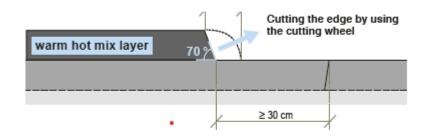


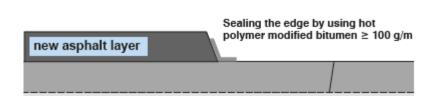


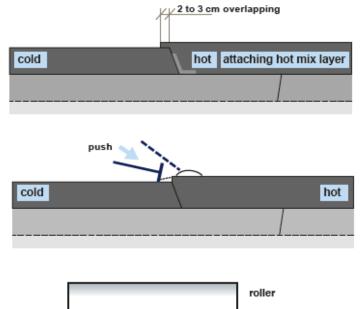


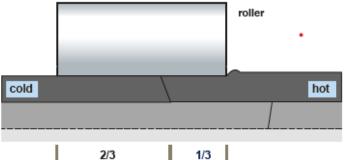

Compactação











Compactação

Superfície

homogênea

heterogênea

Conclusão

SMA – Revestimento asfáltico de alto desempenho

Aplicação em qualquer classe de rodovia e locais de intensa solicitação Resistente a deformação Estrutura pétrea, asfalto adequado e fibra propicia maior vida útil Redução de ruido, segurança e conforto Fácil aplicação

Gracias por su atención

Osvaldo.Tuchumantel@betunel.com.br